
Worked Examples on 
Harmonic Excitation
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1.  Single-axle caravan

   trktrcxkxcxm 2222  

Equation of motion:

Suppose the road profile is sinusoidal, so that the displacement 
input is

Q1. How does suspension stiffness affect the response of the caravan?

Q2. Does vehicle speed affect the response?

Q3. How important are the dampers?
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The amplitude of the response is 
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You can also show these in terms of     , ω, and ωnγ
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The vehicle suspension is an example of vibration isolation, which 
we will look at in more detail later in the module

The caravan’s displacement depends on the excitation frequency, 
which is proportional to the vehicle speed

4.0γ 



Q1. How does suspension stiffness affect the response of the caravan?

Q2. Does vehicle speed affect the response?

Q3. How important are the dampers?

Returning to the original questions:

(A) What happens of the springs are very stiff?

This says that the caravan follows the road profile exactly

The result is independent of road speed

Motion would be very uncomfortable at high speeds

   
R

k

Rk

cmk

Rck
X 






2

2

2222

222

2

4

ω4ω2

ω44*

≈0

≈0 ≈0



RX *

What would really happen at high speeds?

The assumption that the tyres stay in contact with the road 
would cease to be valid

The caravan would bounce from one bump to the next

This says that the caravan follows the road profile exactly

The result is independent of road speed

Motion would be very uncomfortable at high speeds



(B) What happens if the springs are very soft?

This would give a low natural frequency and provide good attenuation 
of road input at medium and high speeds to give a smooth ride

BUT

It would require a large spring displacement to support the weight 
of the vehicle

Can produce excessive roll on cornering

So, what stiffness should the designer choose?

High stiffness tends to improves road holding, but at the expense 
of ride comfort

Low stiffness tends to improves ride comfort, but at the expense 
of road holding

For any vehicle, the final selection will be a balance between the two



Q3. How important are the dampers?

What happens if you remove the dampers?

Does vehicle speed affect the response?
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c = 0

c = 0

If the vehicle speed is such that                         , the amplitude 
of the caravan will be infinite !

0ω2 2 mk

What would really happen?

The suspension would become non-linear and prevent very large 
displacements
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Damping ratio 0.1

Damping ratio 0.4

Infinite damping

Reducing damping improves 
attenuation at high frequencies

… but increases the response at 
resonance

So, what damping level should the designer choose?

Another balance  ― but biased towards limiting 
the resonant response



2.  Application of the Frequency Response Function

A reciprocating air compressor supported on a set of six resilient mounts 

DATA

Mass, m = 4 tonne

Crankshaft speed, W = 31.4 rad/s [300 rev/min]

Overall vertical stiffness of mounts, k = 2.5 MN/m

Damping ratio,  = 0.04



The reciprocating acceleration of the pistons results in a vertical 
reaction force on the compressor body given by 

Objective: To find x(t), the waveform of the steady-state 

vertical displacement of the compressor

Solution method
STEP 1:  Dynamic model

k c

m

x(t)

s(t)

There are two frequency components, one at the crank rotational 
frequency,     , and one at twice the crank frequency, W1 W 22

  tttStSts Ω2cosΩ0.3ΩcosΩ3.1sincos 22
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Solution method
STEP 2:  FBD

kx c  𝒙

m

x(t)

s(t)

Solution method
STEP 3:  EOM

tSt  S=  x K  +  x C  +  x M 2211 ωcosωcos 

 t  s=  x K  +  x C  +  x M 



 Each sinusoidal term in the excitation will produce a steady-state 
response that is sinusoidal with the same frequency as the excitation

     222111 αωcosαωcos  tXtXtx SS

To solve the problem, we just need the values for X1 , 1 , X2 & 2

We use the frequency response function (FRF) to do this

 Once the response to each excitation term has been found, the total 
response is obtained by adding the two together

  tStSts 2211 ωcosωcos 

  111 ω* SHX 

X1 1

  222 ω* SHX 

X2 2

Solution method
STEP 4:  Consider the effect of the forcing function s(t)



We derived an expression for the FRF for this system previously 
(see page 4 of the handout)

and the phase angles are
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For each excitation term, we have

so that where j = 1, 2



Using the data given,

1 = 31.4 rad/s S1 = 1,283 N | H (1) | = 6.81 x 10-4 mm/N

X1 =  0.87 mm  1 = -170˚

2 = 62.8 rad/s S2 = 2,961 N | H (2) | = 7.52 x 10-5 mm/N

X2 =  0.22 mm  1 = -178˚

     222111 αωcosαωcos  tXtXtx SS

and remembering…
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The total response is obtained by adding the individual 
responses together

“Primary”: 1 = 5 Hz X1 =  0.87 mm  1 = -170˚

“Secondary”: 2 = 10 Hz X2 =  0.22 mm  1 = -178˚
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